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The geometry of the Hill equation and of the Neumann system

By N. M. Ercoranit anp H. FLascHKA
Department of Mathematics, The University of Arizona, Tucson, Arizona 85721, U.S.A.

Let there be given a finite-gap operator L = d2/dx?+ ¢ and its Baker function ¥ (x, p),
which is analytic for p on a certain hyperelliptic curve C. It is shown that a sequence
of Biacklund transformations maps C to a projective space. This embedding can be
interpreted as a matrix representation of the Hill equation by the Neumann system
of constrained harmonic oscillators. The image curve, C’; lies on a rational ruled
surface; the structure of this surface is explained by use of ideas due to Burchnall &
Chaundy (Proc. R. Soc. Lond. A 118, 557583 (1928)). Baker functions and Backlund
transformations are then used to define a (many-to-many) correspondence between
effective divisors on the curve C and points lying on a quadric, or in the intersection
of two or more quadrics. This relates the theory of the Hill equation to earlier work
of Kndrrer, Moser and Reid. Itis then shown that the Kummer image of the Jacobian
of C can be realized as a hypersurface in the space of momentum variables of the
Neumann system. Further projects, such as extensions to non-hyperelliptic curves, are
outlined.

THE ROYAL
SOCIETY

1. INTRODUCTION

A differential operator L = D2+ ¢(x), D = d/dx, is said to be ‘finite-gap’ if it commutes with
a differential operator B of odd order, [L,B] = 0. A ‘finite-gap potential’ ¢(x) is therefore a
time-independent, or stationary, solution of an equation 0L/0t = [B, L] in the Korteweg—de
Vries hierarchy. Because L and B commute, they have a common eigenfunction

Ly = Ey,
By = Ry

The eigenvalues E, R are known to be related by an algebraic equation
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2j+1

R =11 (E—¢), (1)

j=1

and the common eigenfunction ¥ (the ‘Baker function’) is an analytic function on the Riemann

p
[\ \

-] - surface (1) or, equivalently, a holomorphic section of a certain line bundle on (1). Until now,
; S the theory of finite-gap operators has drawn mostly on the analytical aspects of Riemann
OH surfaces and on their abstract, intrinsic geometry.

[ g Our aim in this paper is to explain some of the extrinsic properties of the curves, line bundles,
S5N @) and isospectral tori (Jacobians) when those are embedded as concrete objects in a projective
= O space.

= uw

There are several reasons for studying geometric realizations of the finite-gap operator theory.
The classical theory of curves and Jacobians is very beautiful, and an interesting statement about
abstract curves and line bundles should be worth repeating about concrete representations.
Furthermore, when one integrable system, like the stationary Lax equation [L,B] =0, is

t Permanent address: Department of Mathematics, Ohio State University, Columbus, Ohio 43210, U.S.A.
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406 N.M. ERCOLANI AND H. FLASCHKA

mapped to a projective space, a new integrable system may result. We show below, for example,
that the Neumann system of constrained harmonic oscillators is a matrix representation of
[L,B] = 0. Finally, the Baker function provides a way to get geometric conclusions via
transcendental methods. This idea seems, to us, to be promising. We use it to construct an
analytically tractable embedding of the curve C (and its Baker function) into projective space.
We then study the geometric properties of the embedded curve. It lies on a rational normal
scroll, which, we believe, has an interesting relation to the Kummer map (by quadratic
O-functions) of the Jacobian of C. The Weil-Reid Jacobian of (g— 1)-planes in the intersection
of two quadrics in [P29*! enters the picture, and we clarify some of its connections with the
Neumann system. As a sample result of this approach, we show that the Kummer image of
a hyperelliptic Jacobian can be realized as a hypersurface in the momentum space of the
Neumann system.

This paper is a progress report, and tries to convey the flavour of our approach without
overburdening the exposition with details. We hope to make the geometry interesting to soliton
experts familiar with the analytic aspects of finite-gap potentials, and also to persuade geometers
that soliton methods can be a useful supplement to the more standard #-function calculations.

2. BAKER FUNCTIONS

In this section we review the basic facts about Baker functions, primarily to fix our notation.
The language of line bundles is probably more congenial to geometers, while a description via
poles and exponential behaviour is customary in soliton theory. We will use both, and hope
that the reader can follow the discussion by skipping unfamiliar terminology. Nothing in this
section is new. We strongly recommend the beautiful papers by Burchnall & Chaundy (1922,
1928) and Baker (1928), which are rich in ideas but have come to be appreciated only after
being rediscovered in the 1970s. See Krichever (1977) and Mumford (1978) for the modern
perspective.

We fix a finite-gap operator L = D?4-¢(x) (D =d/dx). Such an L commutes with a
differential operator B of odd order 2g+1. It is known that there is then a common
eigenfunction ¥ (x, p) of Lyy = Eyr, By = Ry, parametrized by the points p = (E, R) of the

Riemann surface of
29+1

C:R*= 11 (E—g). (1)
=1
We require that the branch points ¢; be distinct; this excludes soliton or rational potentials
¢(x), but does admit the periodic and quasiperiodic ones.

The common eigenfunction of Lyy = Eyr, By = Ry is determined up to multiplication by
an arbitrary function of p. A unique ¥ is picked out by the following normalization. Let
8 = 0,4...+08, be a non-special divisor of degree g on C (i.e. the only meromorphic functions
with poles only in d are constants). There exists exactly one function ¥ (x, p), xe C, pe C, with
these properties:

(i) for fixed x sufficiently close to 0, p+>y(x, p) is meromorphic on C— oo, with poles,
independent of x, in 0;

(i) (0, ) = 1;

(ili) near oo, ¥ (x, p) € %% = 1+ O(1/k), a holomorphic function, where k = \/E;

(iv) for fixed pe C— 00 —46, x>y (x, p) is holomorphic in a neighbourhood of 0 C.

[72]
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THE HILL EQUATION AND THE NEUMANN SYSTEM 407

Such a function will be called a Baker function. If L is a finite-gap operator, the common
eigenfunction of Ly = EYy, By = Ry, may be normalized to be a Baker function, and
conversely, any Baker function determines a unique finite-gap operator L = D%+ ¢(x). It turns
out that, while the poles d,,...,d, of ¥ are independent of x, the zeros u,(x), ..., ,(x) vary
with x; they satisfy a linearizable system of differential equations u;(x) = f;(#y, ..., ) whose
solution determines ¢(x), see (McKean & van Moerbeke 1975).

In more geometric language, ¥ is the function on C corresponding to a certain holomorphic
section of a line bundle over C. Let £ (§) be the usual line bundle of the divisor J, and let
% (e¥*) be the line bundle with transition function e ¥ into a neighbourhood of co. Then
Z(x) = L(8) ® L (e**) has (by non-speciality of §) a one-dimensional space of holomorphic

det

e
sections. The function ¥ is defined by the section o normalized to o(c0) = 1. One can check

that Z(x) has Chern class g, and that Z(x) = £ (u(x)), where u(x) is the zero divisor of .

In this way, all information about a finite-gap potential ¢(x) is encoded in the properties
of the analytic function ¥ (x, p) (or, in the properties of the family £ (x) of line bundles on C,
if one prefers to express it that way). We will concentrate on Baker functions and their line
bundles, and say very little about the potentials ¢(x).

3. ISOSPECTRAL TORI

It is known that the set of (complex) potentials g(x) associated to a given curve (1) is
parametrized by a (complex) torus, sometimes called the ‘isospectral torus’, which corresponds
to the set of possible poles d, + ... +d, of Baker functions on C. Some singular potentials, having
a pole at x = 0, have to be put in; they arise from the special divisors d. The precise description
of the isospectral torus is as follows.

Two divisors 4, f” on C are called (linearly) equivalent if there is a meromorphic function whose
divisor of zeros and poles is #—f’. The set of equivalence classes of divisors of degree d is an
algebraic variety, the Picard variety of C, Pic® (C). The pole divisors § = &, + ... + 9, of the Baker
function range over Pic?(C).

The Picard varieties are all isomorphic to a complex torus, the Jacobian of C. Thanks to
this isomorphism, Pic®?(C) can be viewed as torus, which is referred to as the ‘isospectral
torus’. It is important, however, to realize that there are many different ways of identifying
Pic9 (C) with Jac(C), and some of the geometry becomes clear only when such identifications
are kept track of rather carefully.

To show that Pic®(C) = Jac(C), one uses the Abel map. Let ay, ..., a,, by, ..., b, be a basis
of homology cycles, with a; a; = b;"b; = 0, a;"b; = J;;. Let w,, ..., 0, be a normalized basis of
holomorphic differentials, i.e. §, w; = &;;. Fix §°€ Pic®(C). The Abel map with base point 4°,

g 8j g 8j
A:8~>(ZJ Wy eny 2 wg)

i=1J s} j=1Js}
takes Pic®?(C) to the torus

Jac(C) = C9/ 4,

def

where A is the lattice of periods of the w;. The isomorphism depends on the choice of basepoint &°;
we take 0° to be 00 +... 4 oo from now on.

[ 73]


http://rsta.royalsocietypublishing.org/

A \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

408 N. M. ERCOLANI AND H.FLASCHKA

The Abel map is defined similarly for divisors in Pic® (C) ; the sum is then X%, . In particular,

for points pe C <= PicV(C),
A(p) =(jpw1,...,fp wg)ng/A. 2)

This map embeds the curve C into its Jacobian.

4. MAPs INTO PROJECTIVE SPACE

In this section we give a briefintroduction to embeddings of algebraic varieties into projective
spaces. We hope that this may be of use to soliton analysts who are not familiar with some
of the geometric ideas. Other readers may prefer to pass on to the next section.

First, recall that projective space P is the set of lines through the origin in C"*!. A line is
given parametrically by the equations u; = a;t, t€C, j=0,...,7, with not all a; = 0. The
equations u; = Ag; ¢ describe the same line. The numbers a,, ..., a, therefore determine a point
in P7, and Aay, ..., Aa, determine the same point. These so-called homogencous coordinates are
written [a,: ...: a,].

We want to map the following complex manifolds to a projective space: (i) the curve C, (ii)
the projective plane P? in which the standard model R? = II(E—e¢;) of C is situated, (iii) the
Jacobian of C. Let M denote one of these manifolds. The goal, in all cases, is to represent the
image of M by parametric equations: if [z,: ...: z,] are the homogeneous coordinates in P,
we want to map

M3mw—zy = fo(m),...,z, = f,(m).

To this end, one must find a suitable set { £, ..., f,} of meromorphic functions on M (there are
no non-constant kolomorphic functions on compact complex manifolds). The standard way to
generate such functions is as follows.

A divisor 4 on the curve (or Riemann surface) Cis a formal sum of points, 4 = p, +... +p,, —
g,— ... — g, interpreted as the potential set of poles and zeros of a meromorphic function on
C. If M has (complex) dimension greater than 1, the set of poles and zeros of a meromorphic
function will have dimension one less than M. Accordingly, a divisor 4 on M is a formal sum
A=P+..+P,—Q,—...—@Q,,, where each P, @, is an irreducible algebraic subvariety of
codimension 1. (If M = P2, the projective plane, for example, the P;, @, would be algebraic
curves.)

For a divisor 4 = P+ ...+ P,— Q;— ... — Q,,, introduce the linear space
L(4) = {all meromorphic functions on M, with poles at most in
P,,...,P, and zeros atleastin Q,,...,Q,}

Now let {f,, ..., f,} be a basis of L(4), and try to define the map i,: M~ P,
tymi [ fo(m): oo f(m)].

If all f; have common zeros, i, will be undefined at some points me M, since [0: ...: 0] is not
an allowed set of homogeneous coordinates. In that situation, it may be necessary to ‘blow up’
the manifold M, as we will see later. Even if i, is well defined on all of M, one must still check
other properties of 7,. We will comment on the details later, as necessary.

One more geometrical idea should be introduced at this point. Consider the hyperplane

[74]
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Ay zo+ ...+, 2z, =0 in P". It intersects the image ¢4,(M) in the set where a, f,(m)+...+
a, f,(m) = 0, that is, in the zero locus of the function «,f +...+a, f,€L(4). There is,
consequently, a correspondence between the zeros of functions in L(4) and hyperplanes in P,
which provides a first bridge between the analyst’s language and the geometer’s pictures. The
set of hyperplanes in P” and, equivalently, the linear space L(4), are called the (complete) linear
system of 4. A divisor linearly equivalent to the original 4 is simply a set cut out on ¢,(M) by a
hyperplane in P7: linear equivalence of divisors corresponds to linear transformation of
hyperplanes.

5. TRANSFERENCES

Consider now the curve C:R? = II(E—¢;) and a fixed Baker function on C. How can one
map C into a larger projective space? According to §4, one must find a linear system on C.
There are, of course, many candidates; we want the system to be built.in some way from the
Baker function, so that the projective embedding will encode the Baker function ¥ (x, p).

Recall (cf. §2) that the only meromorphic functions with poles among the poles 6, +... +J, = &
def

of ¥ are constants; that is, L(8) = C. The one-dimensional linear system L(8) will therefore
not provide a useful projective embedding: all of the curve C maps to a single point. One must

allow more poles than just 8, say é;+...+d,+z,+... +z, = §+Z, for there will be more
def

functions satisfying less restrictive conditions. The poles Z will be independent of x. In the
language of line bundles, we are changing £ (8) ® £ (ek?) to Z(8) @ £ (e**) ® L(Z), or
equivalently (see §2), L (u(x)) to L (u(x)) @ L(Z). At the level of divisors, the operation is
a simple one. The divisor motion x> g (x) in Pic? (C) encodes the x-behaviour of the finite-gap
potential ¢; we are now mapping this to a curve x—>pu(x) +Z in Pic@*t™ (C), which is clearly
not very different. Still, as we will explain, the concrete analytic and geometric realizations
of this apparently minor change are very different from the original D%+ 4.

As a first step, we show in this section how one can construct functions on C that have poles
in 84+ Z and the e** behaviour at 00 (characteristic of Baker functions). In other words, we
will build sections of £ (8) ® £ (e**) ® £ (Z) from the unique section of £ () ® £ (e¥%). The
method is a variation on the Burchnall & Chaundy (1928) concept of transference, which, in
slightly different contexts, is also known as Backlund-, Crum-, or Darboux-transformation.

ProposiTiON 1. Let f be the Baker function with pole divisor &, and let p,, e C—8— 0. Let
W(f,g) = f'g—fg' be the usual Wronskian of functions of x. Let T denote the hyperelliptic involution,
7:(E,R)—> (E, —R).

W (x, p), Y (%, 7hx))

® X5 = ) ~Elpy) ®)
has poles 8+ p., and goes like Yr(x, Tpy) k~1€¥% at c0.
(ii) Let R(x, p) = X (%, )9 (:Tpx). Then
¥ (%, p) = R(x £)/R(0, 9) (4)

def
is again a Baker function.

(iil) The potentials q(x), §(x) corresponding to yr,Vr are related by

1) = g +2 S5 I, ).

[ 75 ]
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The proof'is an easy calculation. We call the map ¢ — y a partial transference at p,, and the map
Y a transference at p.

ProrosrTioN 2. If 4, 8 are the pole divisors of Y and of 1} (obtained by transference at py.), then
A(9) = A(0) + A(px).

The proof may be found in Burchnall & Chaundy (1928). This proposition shows that
translation by 4(p,) in the Jacobian can be expressed analytically as transference. More
generally, Burchnall & Chaundy (1928) show the next proposition.

ProrosiTION 3. Any two divisors 8,8” € Pic'9 (C) can be related by at most g transferences :
A(0) = A(0) + A(py) + ...+ A(p,)-

We will have several occasions to refer to these propositions, so a general explanation of their
significance may suffice for now.

(1) Algebraic problems are solved by transcendental methods. For example, to find a
meromorphic function with poles 6+ p,, take the Baker function ¥ corresponding to &, form
the partial transference y of (3), and set x = 0. This is not claimed to be a computationally
effective procedure. Rather, the intervention of a deformation in x results in formulas that are,
in some circumstances, better than a mere existence theorem or a possibly very messy algebraic
prescription.

(2) The Jacobi inversion method is put into a more tractable form (for our purposes). Suppose
one wants to convert translation on the Jacobian into an operation on divisors: given
8e Pic9(C), ae CY, for what 8" is A(8") = A(S) +a? Jacobi inversion tells one to find zeros of
a certain @-function. Transference tells one to form Wronskians of Baker functions, and this
prescription is more useful in certain soliton problems.

6. THE NEUMANN SYSTEM

Neumann (1859) posed and solved the equations of uncoupled harmonic oscillators,
%; = E;x;, constrained to move on the unit sphere 2 x} =1 in configuration space. The
equations, derived from elementary mechanics, are

K+qr;=Eix;, j=1,...,8+1, (5)
g+1 g+1
subject to =1, X x%=0, (6)
=1 =1
where ¢ is the constraining force, "
1= 3 Exi+id (7)
i=1

The similarity between (5) and the eigenvalue problem y” + ¢y = Eyr was apparently first
noted by Moser (1978). To conform to the standard notation, we will henceforth write ¢ for
the independent variable x: ¥ (¢, p), ¢(¢), and so on.

ProrosiTiON 4. Let d?/d#? +q(t) be a finite-gap operator, and let E,, ..., E, ., be a subset of the finite
branch points of R®* = II(E—g¢;). There exist constants p,, ..., Py, such that the functions

x;(2) ;f V(¢ Ep)
satisfy 2441 x3(4) = 1.

[ 76 ]
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THE HILL EQUATION AND THE NEUMANN SYSTEM 411

Remark. Differentiate 3 27 = 1 to get 3 x; %; = 0. Differentiate again, and use the eigenvalue
equation i;+gx; = E; x; satisfied by x;(¢) to get ¢ = 3} E; 74 x}. With this representation for
q(t), the eigenvalue equation is rewritten

+ (X Eyx} +43) x; = Ej
Hence we have proved:

CorovrrarY. The x(t),j = 1,...,g+1, solve the Neumann system.

Proof of proposition 4 (McKean & van Moerbeke 1975; Moser 1978, 1981; Cherednik 1978).
Let 7 be the hyperelliptic involution. Set ¢ (¢, p) = (¢, 7p), then ¢ and ¢ are two independent
solutions of j+qy = Ey, except at branchpoints where 7p = p and ¥ = ¢. The product
Y (t, p) §(¢, p) is meromorphic on the curve C, since the exponentials cancel; moreover, the
product ¥¢ is invariant under 7, and so is a rational function of E alone. In terms of the zeros

4 (t) and poles 0 of i, we have gﬁl E—E(u;(t))
Y(t.p)p(t,p) = o E—E@)
Let Q be the differential

g+1
) jﬂl (E—E(3;))
Q= SR dE, (8)
and let 4 be the function on C,
R
h(p) = g—ﬂ—(‘p”)‘*, (9)
Il (E-E))
j=1

which has poles at the E; and zeros at the remaining branchpoints ey, ...,¢, and at .

The differential w = k<2 has simple poles at E,, ..., E,,, and at co. Thc residue at E; is
(RcsEj hQ) Y (¢, E;) (¢, E;). Set p; = Res E, h€2; then, since ¥ = ¢ at branchpoints, this re51duc
is p; (4, E;)®. The residue at 00 is —1. The sum of residues of w is zero, so T p; yr(¢, E;)? = 1.

With xj \/ p; ¥ (t, E;) we get the desired identity. [ ]

The kcy feature of the proof (which will reappear in greater generality in § 10) is the passage
from i to the residues of Yy@h€2. Note that

I (E—E(u(t)))
YohQ = k=1 dE;
I1 (E—Ej)
=1

if we expand this in partial fractions, we get

g+1 x(t)
e AN
Z , E—E; dE,

together with the constraint
g+1

2 xf=
j=1 !
The (many-to-one) change of variables x(¢) - x%(¢) amounts to the introduction of ellipsoidal

coordinates and was already used by Jacobi to linearize equations; we have here translated
it into the language of Baker functions.

[ 77 ]
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7. THE VECTOR BAKER MAP

This section shows how transferences (§5) are used to map C to a projective space. In the
process, we again encounter the Neumann system (§6). As above, let {e,,...,¢,,00} U
{Ey, ..., E,1,}, be a partition of the branchpoints, and let % be the function (9) with zeros
Z+ 00 =¢+...+¢,+ 0 and poles at the E;.

LemMa. The functions Wt p), ¥r(t, E;))
M) =N G EG) By

J=1,...,g+1, have poles in 6+ Z, and * go’ like n/p; (1, E;) e¥* = x; e¥* at 00 (i.e. they are sections
det

(10)

of L(6+2Z) ® L(ek7)). ¢
Proof. This is immediate from proposition 1 of §5. |
We look at the y; either as components of a C¢*'-valued function on C,
x(t p) djf (Xl(t,p),...,Xy+1(t,[)))T, (11)

or as homogeneous coordinates of a P?-valued map,

2t p) (:f [Xl(t’[’): '”:Xy+1(tap)]' (12)

The circumflex distinguishes between these interpretations. We call either one the vector Baker
map.

Just as the scalar Baker function 3 solves Ly = EyYr, By = Ry, so the vector y is a
simultaneous eigenvector of two matrix operators L and B.

Prorosition 5 (Flaschka 1984). There exist (g+ 1) X (g+ 1) matrices L, B whose entries depend
on the coordinates x;, y; = %;(j = 1, ...,g+ 1) of the Neumann system and ( polynomially) on the function

h, such that ¥ = By, (13)
Ly = —h%Ey. (14)

The compatibility condition between (13), (14),
L= (81, (15)

is equivalent to the Neumann system.

Remarks. (1) Equation (15) is the Lax representation for the Neumann system first found
by Adler & van Moerbeke (1980). It was derived from the Hill equation in Flaschka (1984),
where the proof of proposition 5 may be found.

(2) The explicit form of L, B will not be needed later. The point to note is that the process
of mapping C to a projective space has produced a vector Baker function y and a Lax pair
L, B; these may be thought of as a representation of the scalar Baker function ¥ and the scalar
Lax pair L, B.

(3) By §5, (¢, p) is a section of L (8) ® L (e**) and y(¢, p) is a vector of sections of
ZL(8) ® L(e*) ® L (Z). At the level of Jacobians, the motions in ¢ are therefore identical.

(4) One could map C to a P™ by adding to & a divisor Z other than ¢, +... +¢,. The degree
of Z must be greater than or equal to g if matrix eigenvalue problems (13), (14) are to be
obtained (Flaschka 1984). Our choice of Z was further restricted by the desire to get the usual
Neumann system.

[78]
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8. RATIONAL NORMAL SCROLLS

We now turn to an investigation of the geometry of the image of C under the vector Baker
map # in (12). As ¢ changes, so does the linear system of £ (8+Z) ® £ (e**), and the image
(¢, C) will move in P9. We have not found this to be a good way of thinking about ~dependence,
so we will, for now, fix t at t = 0, and abbreviate £(0, p) to £(p), etc. We denote the image §(C)
of C by C".

(a) First properties of the curve C’

Definition. The degree of C’ in P? is the number of points of intersection of C” with a generic

hyperplane in P9.

LeMMA. C’ has degree 2g.

Proof. Refer to the end of §4: the intersections of a hyperplane with C” are the zeros of some
function in L(8+ Z). The typical function has 2g poles d + Z, and hence also 2g zeros. ]
The next result concerns the faithfulness of the image: is it a singularity-free copy of C?

ProrosiTiON 6. (i) When g = 2, C’ is a nodal quartic or a double conic in P?; (ii) When g > 2,
C’ is non-singular whenever 8 lies off a certain two-dimensional subvariety of Pic® (C).

Remark. A ‘nodal quartic’ is a plane curve with one node (a point when two branches of
the curve cross), with the equation of the curve being a fourth-degree polynomial. The
lemniscate is the most familiar example. A ‘double conic’ consists of two superimposed copies
of a conic, for example (x2+y2—1)2 = 0.

Proof. The image C’ will be a non-singular copy of the curve if (i) £(p) is never [0: ...: 0]
(if the linear system L(8+ Z) has no ‘basepoints’); (ii) if §(p,) # £(p,) when p, # p, (otherwise,
there will be a node); (iii) if dg(p) # O (otherwise, there will be a cusp).

L(0+ Z) has no base points since deg (§+ Z) = 2g. To verify (ii), (iii), one must show that
dim L(0+Z—p,—p,) = g—1 for p,, p,€C (Hartshorne 1977). By Riemann—Roch, this will be
the case if there is no differential with zeros 8 + Z and poles p,, p,. Now, since Z is non-special,
there is a unique differential w,, ,, with zerosincluding Z, poles p,, p,, and residues £ 1ifp, # p,.
The differential w,, ,, has g zeros besides Z; call them W, . {p,, po} > W), , maps (Cx ()
to a two-dimensional subvariety V of Pic9(C).

When g = 2, V is dense in Pic'®(C), almost all § belong to V, and there will be a node. A
little more argument is needed to exclude the possibility of cusps and to see that double conics

1D2 sym

will arise; we omit this. When g > 2, almost all § are not in V, and §: C—C" will be an

embedding. ]
(b) Rational normal scrolls

The curve C’ < P9 lies on a very special two-dimensional surface in P9, whose description
will take up the rest of this section.

The hyperelliptic involution 7: (E, R) - (E, —R) on C is inherited by C’, where we call it
7’. For each Pe C’, draw the line P! through P and 7’P; at branchpoints where P = 7°P, draw
the tangent to C’. This so-called hAyperelliptic secant through R((E,R)) and g((E, —R)) is
associated uniquely with E£e€P!. Hence, we have a family of disjoint P's indexed by P*; this
is called a rational ruled surface.

Abstract rational ruled surfaces are classified by the non-negative integers and are denoted
by S,. S, is P x P, S, is P2 blown up at one point. The rational ruled surface generated by

27 [ 79 ] Vol. 315. A
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the hyperelliptic secants of C’ is one of these two simple types. All §,, can be embedded in a
canonical way in P?*2¥+1: the resulting surfaces are called rational normal scrolls and are denoted
by Sy , (see Griffiths e al. 1978). The scrolls arising in our example turn out to be of type
Sig-1)/2,0 if g > 11s odd, and of type S,_,),, ; if g is even. Before giving some of the details,
we want to explain in general terms the reasons for our interest in these surfaces.

First, the geometry of rational normal scrolls is very attractive, and we think it remarkable
that all the basic ingredients (Griffiths & Harris 1978) in the theory of these surfaces can be
calculated explicitly and naturally in terms of Baker functions. It is plausible that all the S ,
can be constructed in a uniform way from Baker functions of higher order operators L, but
that has yet to be worked out. More significantly, the scrolls seem to play a role in the geometry
of Kummer varieties. We do not know the whole story yet; another small result is given in
the next section in connection with a discussion of the Kummer surface.

Our analysis of the rational normal scroll starts not with the embedded curve C’ = P9, but
with the P2 in which the original curve C:R? = II(E—g¢;) is situated. We map all of P?
birationally into P9 in such a way that the image is the desired rational normal scroll; the curve
C < P? is carried along, and the mapping of P? restricted to C is precisely the vector Baker
map §#.

The map P2 P? will be defined by a linear system on P2, with some variations on the
general scheme of §4: the functions can be given explicitly, and there are basepoints, namely
points in P? where all functions vanish. The main desideratum, as in § 7, is that the linear system
have some relation to the pole divisor § (on C) of the Baker function. Burchnall & Chaundy
(1928) once again provide the answer. In the course of the proof of proposition 3, they
constructed a linear space of polynomials on P? whose zeros on the curve C include the zero
divisor u(t) of . We first adapt their construction to our needs, and then outline the geometry
of the map into PY.

The Burchnall-Chaundy system

Fix a Baker function (¢, p) with poles & and zeros x(t), and let ¢(¢, p) = (£, 7p) as in §6.
Let z/r be the Baker function obtained after g+ 1 transferences at £, ..., E,
its poles and zeros. Set ¢(t, p) = (4, 7p), and D = diy)r/d#.

The functions ¢y are meromorphic on C (the exponentials at 0o cancel) and have finite
poles 8 +78 Ifr(p) = g 09_, (E(p) —E(3 )), therefore, r¢yy® will have no finite poles.

de:

415 write , w(t) for

Lemva. There is a linear combination of 1y, i), ..., 1r9+V) that vanishes precisely at Tw(t),
pu(t),and E\+...+E

Proof. The term rqggz(gﬂ) has a pole of order 3g+ 1 at 00, so the general linear combination
has 3g+1 zeros. We claim that

WL, p), Y(6E, oo (8 Eygyy)), (16)

(where W is the (g+2) x (¢+2) Wronskian determinant) has the desired property. The expres-
sion (16) is clearly a linear combination of the required form, and ¢ vanishes at 7w(#), while W
vanishes at E, + ... + E,,. To see that I also vanishes at x(¢), note first that the Baker function
obtained from Y by transference at E, .. .» 4, 1s just the original . Indeed, by proposition 3,
A(8) A(®)+A(E)+...+A(E,,,); a repeated transference at those same points gives

A(8) +24(E,) +...+24(E,,,). But 24(E;) = 24() =0, since 2E; = 200, and oo is the

[ 80 ]
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basepoint for the Abel map. Now, W is not quite that twice transferred Baker function; to get
the original yr, divide W by W(;Zr(t, E),.., z/f( g+1)) and call the result £(¢, p). Then
Yt p) = E(¢, p)/£(0, p). Note that the zeros E +...+ E,,, of Ware cancelled in this procedure,
but the other g zeros are unaffected. They must therefore be just the zeros u(t) of . ]

This is the key part of the Burchnall-Chaundy construction. There are now just a few
mechanical steps left before we arrive at the desired linear system on P2.

(1) Set t=0 (cf. the beginning of this section); then ¢ = z/f =1, and the @ are
meromorphic on C. The functions (16) assume the simple form: 7, g, . e,

(2) The rgb(’) have no finite poles on C, and so are polynomials in £ and R. They therefore
make sense on C? (the (E, R)-plane) and not just on C.

(3) Because yr = (E—q) v, D for j j 2 2 can be expressed in terms of Y = 1,9, and powers
of E. Namely, @) = pi(E)+¢;(E) ), for certain polynomials > 45, and so

D = 1p,(E) +1g;(E) V. (17)

(4) It is easy to calculate 71/;(1) explicitly. The function ;;(1) is the unique meromorphic
function with poles 0+ 00 and behaviour £+ lower order terms at co. The result is

WO(ER) =R+ 3 ¢ T (E—E@E)); (18)
j=1 z(#j)

the ¢; are certain constants, chosen so that the polynomial vanishes at (E(d;), R(7d;)), i.e. at
7d; on C.

(5) Extend the polynomials from C? to P2: set E = E/U, R = R/U, and clear powers of U
from the denominator.

(6) After writing out a few of the projectivized polynomials 7P, j =0, ..., g+ 1, one finds
a simple structure corresponding to (17). We now summarize these results.

Definition. Set

jomn [

G, =1l (E-E@)U)

J

1
(the projectivized r), and

G, = {Ug Rey ¢ 11 (E—E(S) U)}

j=1 1(9*)')
(cf. equation (18)). Let m = }(g—1) if g > 1 is odd, m = }g if g is even. The Burchnall-Chaundy
system on P? is the linear span & of the products
{Om EU™ 1, .. E™ ®{G,,G,} (19)
if g is odd, and the linear span of these products with £™G, deleted, if g is even. (% depends
on the pole divisor 8 of ¥.)

ProposiTION 7. The linear space S has dimension g+ 1 (this reveals a hidden linear dependence among
the functions (16)). All functions in & vanish at the finite basepoints (E(8 )5 R(T(Sj)) There are further
basepoint conditions at infinity, [U: E: R] = [0:0:1], which we will not spell out. & restricted to C is the
vector Baker system L(0+Z) of §7.

The map of P? into P9

The system (19) contains two pencils of rational curves: G, = f, G, +8,G,, [f,: f,]€ P,
and L, = o, E+a, U, [a,:a,]€P2 (The latter are the vertical lines E = const.) Now blow

27-2

[ 81]
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up P2 at the basepoints until the map is well defined, and blow down the contractible cross-fibres.
The details are not hard, but the ‘book-keeping’ would be too much to reproduce. On the
surface P2 eventually obtained from P?, the proper transforms L, and G of L,,G, form a
rational double ruling: [? = Gf; =0,L,.G,=1. P2 is therefore 1somorph1c to §, = P! x PL.

The system & by which S, is embedded in P is the linear system L(mL+G), which shows
(Griffiths et al. 1978) that the image is Sy = S(g_y)2,0 if g is odd, =S, 4 if g is even. When
g is odd, we have found the desired scroll, since (19) is the Burchnall-Chaundy system. When
g is even, the Burchnall-Chaundy system is (19) with one basis element removed. That creates
another basepoint condition at co, which is resolved by blowing up and down one more time
in just the way that takes Sy, o to S¢,_ /5 | (Griffiths et al. 1978, p. 527).

The main point to appreciate is this: the Burchnall-Chaundy system of polynomials built from Baker
Sunctions provides exactly the rational pencils and linear systems on P? that produce the rational normal scrolls
Sfrom P2 according to the classical method.

9. THE KUMMER SURFACE, QUADRICS, AND THE VECTOR BAKER PLANE

So far we have fixed a pole divisor & of ¢, set £ = 0, and studied the vector Baker map of
the curve C into PP9. We next want to ask how this picture changes as & varies over Pic@ (C).
A clue is furnished by the classical theory of Kummer’s quartic surface in P? (Hudson 1905).

Suppose C has genus 2. There is a familiar map of Jac(C) into P3, given, according to §4,
by a certain linear system on Jac(C). Linear systems on Jacobians are built from #-functions.
This is not a suitable place to review f-functions; we just remind the reader of the functional
equations that determine the different types of f-functions. We take Jac(C) = C9/ A, with period
lattice 4 = Z9+Q79; Q is a symmetric g X g matrix, ImQ > 0. The definitions hold for
arbitrary g.

(1) Theta function. 0(z+m) = 0(z),

0(z+Q2m) = exp (—inQm -m—2inm-z) 0(z), zeCI, meZ9. (20)
(2) Theta functions of order r. Instead of (20),
Sflz+Qm) = [exp (—inQm m—2inm-z)]" f(z).

(3) Theta function with characteristic. For a, be CY,

0[‘;] (z) = exp (inQa-a+2ima: (z+5)) O(z+Qa+b).

Below, we write 6(z, ) to indicate the dependence of 6 on the Riemann matrix Q.
Returning now to the genus 2 Jacobian Jac(C), we consider the map to projective space given
by second-order (‘quadratic’) f-functions. Itis a classical result (Mumford 1983) that the linear

1
space of quadratic @-functions has the basis 6 [z(;l] (22,29), a = (a,,a,) €C? a,=0,1. Let

0., 0,, 03,0, be a labelling of these functions. Even though the 6; are not well defined on Jac(C)
because of the factor of automorphy, exp (...), in (20), the map T:z—[0,(z): ...: 6,(z)] makes
sense projectively (a common factor is irrelevant).

T is a 2-to-1 map from Jac(C) into P3. T(z,) = T(z,) when z; and z, are related by the
hyperelliptic involution, that is, when z, = A(v, +v,), z, = A(Tv,+7v,) = —A(v,+v,). The

[ 82 ]
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image T(Jac(C)) é:fS is known to be defined by a fourth-degree polynomial in P?; it is called
€]

the Kummer surface.

A tangent plane to the surface § cuts § in a curve; because S is quartic, this curve has degree 4
in the tangent plane. It is birational to the original genus 2 curve C; indeed, it is a nodal quartic
(cf. §8) in the tangent plane %, and the tangency point is at the node (Hudson 1905).

These classical results suggest the following picture. For each 8 € Pic®9(C), the vector Baker
map sends the hyperelliptic curve C to a curve C’ in a P9 that is tangent to a 2-to-1 image
in P9+1 of Jac(C), and as & varies over Pic’(C), the tangent hyperplanes envelop this 2-to-1
copy of the Jacobian.

This result is proved in the next section, unfortunately in a non-constructive way. To
illustrate the close connection between quadratic §-maps and our vector Baker embedding, we
close this subsection by rediscovering the scrolls of §8. Let T: Jac(C)->P?~! be the quadratic
6-map of the Jacobian of C, with genus now greater than or equal to 2. The Abel map 4 embeds
C in Jac(C) (cf. §3). Let C= ToA(C).

Proposition 8. C is a curve of degree 2g contained in a P9 = P?~1, It lies on a rational normal scroll
of the kind described in §8.

Sketch of proof. T is the map given by the complete linear system | 26|, where 0 is the theta
divisor. By Jacobi inversion, 26 intersects 4(C) in 2g points, which are linearly equivalent to
a divisor of the form 6+ Z. So T'| ¢, is just a vector Baker embedding. [ ]

The vector Baker plane in P9+

In §7, we mapped C to C’ < P9 via §. To be able to think of these P%s as enveloping a
hypersurface, we must put them into a P9+1. This construction is given next.

Definition. =:C—P9*1 is the map

E(p) = [Y(p) —h(p) Y(p):h(p) Xa(£): - k(D) Xgur ()]. (21)

Note that, but for the first coordinate, this is just the vector Baker map (12). We now give
some sample results to justify this definition. Let [Uj: ...: Ugy,] be the ambient coordinates in
P91, Recall the definition of the Neumann variables:

X = \/pj!ﬁ(Ej), Yy =% = \/pj’ﬁ(Ej)Q set x = (xy, “')xg+1)) Y= (Y- yg+l)‘

ProposiTioN 9. (i) Z(C) lies on the hyperplane V < P9+ with equation
Uty U+ +yy, Ugyy = 0,

and é(C ) = V = P9 is just the vector Baker embedding (cf. §7) of C.

(i1) Let [ be the intersection of V with the hyperplane x, U, + ... + %941 Uy = 0. Then [intersects B (@)
ind+Z.

(111) Let é be the line in P9%Y dual to the (g—1)-plane [. Then é 1s stmultaneously tangent to the confocal
quadrics

5 U;Z U2 k=1 (22
jzllek—Ej_ 0> =5L...8 \ )

[ 83 ]
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Sketch of proof. (i) By comparing behaviour at poles and at co, one checks that

g+1 .

El yih() x;(p) = h(p) Y (p) — ¥ (p).

(ii) In the same way, check that yr(p) = 29X x; x;(p). So the points on icE (C) are the zeros
of 4 and the zeros of {; when ¢ = 0, the latter are located at 4.

(1i1) £ is the projectivization of the affine line {y+sx|se C}. It is a common tangent to the
quadrics (22) by results of Moser (1981) and Knoérrer (1980).

For the benefit of the reader familiar with Moser (1981), we remark that V is the g-plane
spanned by the (projectivized) gradients to the @, at the points of tangency of y +sx, and by
the projectivization of x. That is, V is spanned by the projective Chasles frame. The line [ is spanned
in V by the gradients only.

The rather appealing conclusion is that the Neumann pole divisor 0 + Z is realized as the (g — 1)-plane
dual to a common tangent to the confocal quadrics (22). We omit a detailed discussion, to progress
to some newer geometric ideas in the next section.

10. INTERSECTIONS OF QUADRICS

In this final section, we continue the discussion of §9 in a new direction. The constructions
are motivated by two goals. From the viewpoint of soliton theory, one wants to see a solvable
system, such as Neumann’s, as a flow on a geometric object, in a way that makes its ‘hidden
symmetries’ as obvious as possible. This approach goes back to Lie, who studied separable
Hamilton—Jacobi equations with Monge cones defined by line complexes. We want to
generalize Lie’s theory to g > 2, but since our work is just beginning, we will not stress this
point of view. The geometric problem addressed in this section is to construct an extrinsic and
manageable, but not necessarily faithful, representation of the set of all effective divisors of given
degree d on a curve C. We will first describe this problem in outline, and then show how Baker
functions and transferences enter in a natural way.

(@) Sets of diwisors

Let C be a not necessarily hyperelliptic curve, and for d > 0 let C‘? be the set of positive
divisors of degree d (not the set Pic® (C) of linear equivalence classes!). C» x> C%/§, = set of
unordered d-tuples of points of C; C is an algebraic variety as a result of this identification.
Complete linear systems of divisors of degree d (i.e. linear equivalence classes) consist precisely
of the maximal (projective) linear subspaces of C». The maximal linear subspaces are not
necessarily all of the same dimension; this is the case if, and only if, d > 2g—1. Whend > 2g—1,
all divisors are non-special, and by Riemann-Roch the dimension of the linear system is
d—g+ 1. Projectively, the dimension is d—g. We therefore picture C® as a space foliated by
P95, each of which consists of a maximal set of divisors linearly equivalent to each other.
Alternatively, we may start with the set of linear equivalence classes of degree d divisors; it
is Pic'?(C), a torus. To each [a] € Pic® (C), we attach P4~9 =~ PL(a), the set of divisors linearly
equivalent to a. Thus, C¥ can also be viewed as a fibre bundle over Pic‘?(C).

We are interested in our hyperelliptic C, and in the set C®? of effective divisors of degree 2g.
A model for C?? will be described in subsection 10 (¢). For further background on the
general question, see Griffiths (1976).
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(b) Cell structure on linear systems

Geometric objects are particularly pleasant to analyse if they have a cell decomposition. They
are then written as disjoint union of Euclidean spaces (of varying dimensions). P9 has a natural
cell decomposition: Ps = Coy o1y ... U C U {point).
In homogeneous coordinates, C? = {[U,: ...: U] | U, # 0}, C/' = {[0: U,: ...: U,]| U, # 0},
etc.

Now fix [f] € Pic®?(C). Consider the projectivized linear space PL(f). Now, f is linearly
equivalent to §+ Z for some d, so we take 0+ Z as the representative of the equivalence class
of 8. PL(0+Z) = P9, and therefore has a cell decomposition.

PropoOSITION 10. The set M, = {a € C®* | = 8+ Z, and precisely i of the points in a are o0}
det

is C978 PL(O+Z) = MU M, U...UM, UM, is a cell decomposition of PL(8+Z).

Proof. We will exhibit, for each ¢ = 0, ..., g, an affine subspace V; of L(6+ Z); each function
in V; will have its zero divisor in M. These V}, isomorphic to C?~%, will coordinatize the divisor
sets M.

Let ¥©® be the Baker function with pole divisor 8. Let (1) be the partial transference at
¢, (see equation (3)). Let ¥(® be the partial transference of YV at ¢,,

(1) (1)
W(z)(ﬁ) — W(WE((’{)),_‘/% (¢2))

(weset ¢ = 0), and define #®), ..., 3@ by continued partial transferences at ¢, ..., ¢,. Each @
is in L(0+Z). One sees easily that ¥y has a zero of order i at 00, so the functions are
independent and form a basis of L(6+ Z).

Let V; = @ +linear span of {y/**? ... @}  Clearly, the zero divisor of fe ¥, contains co
precisely ¢ times, and no f that is not a (non-zero) multiple of a function in ¥V, has this property.
V, = C97% as asserted. [}

(¢) Intersection of quadrics

We now construct a model for the complicated variety C®9. This will not be a faithful
projective embedding; we will sacrifice faithfulness for relative simplicity, and accept a certain
amount of ambiguity as long as it seems manageable. That criterion should become clearer
as we proceed with the example.

Let ¥ denote the typical function in L(d+ Z) with zero divisor in M|, (no zeros at o). Given
¥, write @(p) = ¥(1p). The differentials (see §6) w = PPAQ have poles at all branchpoints
€15 -+ €ag41 and at 00; let w; = Res, », and w, = —Res,, . Since the sum of residues of w is
zero, the w; are constrained by

z u)‘7 = wo. (23)
Because ¥ = @ at branchpoints, the w; are of the form
wy = p; ¥2(€;);

p; coincides with the quantity introduced in §6 when ¢; = E;. As in §6, we set w; = 22,
J=0,...,2g+1; z; is determined up to * sign.

[ 85 ]
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We view the preceding steps as providing ellipsoidal coordinates on M, (cf. conclusion of
§6). Given € M, we map

29
jl;[l (E—E(Otj)) iE 2g+1 212 iE

The map a—>{z}} via {E(a;)} is 2%-to-1. For given {z}}, there are 2%9*! sets {z;}; this
indeterminacy is common to ellipsoidal coordinates in general, and is the ambiguity mentioned
at the outset.

Modulo this ambiguity, we have a model for C®®? as the set of points on the quadric
22041 22 = 22 in PO

This much has dealt with the big cell, C? = PY. If we now do a similar construction with
a€ M,, we find, because Res,, ¥Y®PhrQ = 0, that

2g9+1

2 zZ2=0. (24)

=1
Set —z% = Res,, EPY®hQ. Then X Res E¥YDLQ = 0 gives

2g+1

E,l €2} = z}. (25)
Modulo the same ambiguity as before, we see that the finite, effective divisors on C of degree
2g—1 (a€ M, has the form 22971 a;+ 00) are mapped to the intersection of the quadrics (24),
(25).

We can continue this procedure for ae M,, ..., M; if x € M;, the corresponding ellipsoidal

coordinates lie in the intersection of the i+ 1 quadrics
29+1 29+1
2 eFz2=0, k=0,...,i—1, X ezf=2z (26)
Jj=1 j=1

So far we have talked only about the points in C?9, We can also ask about the linear subspaces,
P9, of divisors linearly equivalent to € C?9). It is easy to see that they map to linear subspaces
in the quadric X z§ = z}, again modulo the ambiguity mentioned earlier.

In a similar way, we have a correspondence, with a finite degree of indeterminacy, between
equivalence classes of non-special divisors of degrees 2g, ..., g and linear subspaces of dimension
g ¢—1,...,0 in the intersection of 0, 1, ..., ¢ quadrics (26).

The ambiguities inherent in this arrangement are yet to be resolved. In a couple of special
cases, the answers can be found in the literature.

Example 1. Reid (1971) proved that the set of (¢—1)-planes in the intersection of the two
quadrics (24), (25) is precisely the Jacobian of C. There is, therefore, a 1-to-1 correspondence
between points of Pic'9 (C), with their P?~!s attached, and the (g— 1)-planes in (24), (25) (these
correspond to divisors a € M ; the P971 is 00 + the union C/~1 Y ... U C U {point} = P971).

Example 2. When g = 2, the smallest cell M, consists of non-special divisors of degree 2. The
corresponding linear systems are [P%, i.e. consist of one point. The set of points in the intersection
of three quadrics (26) is the classical K3 surface, known to be birational to the Kummer surface.
This suggests that the intersection of g+ 1 quadrics (26) in genus g, a ‘K3 variety’, should play
a similar role.
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Example 3. Lower-dimensional subspaces in the intersection of two quadrics are known to
play a role in the construction of moduli spaces for vector bundles over hyperelliptic curves
(Desale & Ramanan 1976; Atiyah 1955). We hope that the coordinatization by transferred
Baker functions may make the analysis of these moduli spaces tractable, but we have no results

yet.
(d) More on +, and on the Kummer variety

We first encountered the square root ambiguity in §6, when we set x;(t) = v/ p; ¥(t, E;). A
very simple example shows that this + freedom should be expected when one tries to map a
finite-gap potential ¢(¢) to a Neumann system.

The simplest stationary Lax equation [L, B] = 0, for g = 1, leads to an equation ¢(¢) = (cubic
in ¢)%, which is solved in terms of the Weierstrass #-function. The corresponding g = 1
Neumann system leads to #,(f) = (quartic in x,)}, which is solved by Jacobi elliptic functions.
The familiar formula (2 —e¢;)™! = sn?® relates the 2 of one period parallelogram Z+ QZ to the
sn of 2Z+2QZ.

When passing from a finite-gap ¢(¢) to the Neumann solutions x;(#), one might therefore
expect that the Jacobian C?/4 of g(t) should have to be doubled. Indeed, the x;(t) flow is
linearized on C9/2A. This is done explicitly by Mumford (1984) (and appears to be a general
feature of matrix Lax equations when the degree of the linear system involved is about double
the genus of the isospectral curve). We do not yet have a way to handle this feature within
a Baker-function framework, i.e. without appeal to explicit f-function calculations, which we
like to avoid.

In one special case we are able to control all ambiguities by using Reid’s theorem and some
of Mumford’s formulas. We close by sketching the situation; our results are not as explicit as
we expect them to be eventually, so we omit the details.

Consider the set of (g—1)-planes in the intersection of the two quadrics (24), (25); it
is isomorphic to Jac(C), as explained in example 1. The projection 7r:[P29+1 Po+1
w2y ot Zggya] > (207 -7 2g4,] takes a (g—1)-plane Ain P20+ 0 a (g—1)-plane [in Po+1,
Knorrer (1980) shows that such an / has the properties described in proposition 9 (iii) : its dual
is a common tangent to the quadrics (22). In the language of §9, [ is contained in a unique
V. The vector Baker plane ¥ has normal [—1: y,: ...: Yg+1]- As A varies over (g—1)-planes in
the intersection of the two quadrics (24), (25), the planes V' envelop an algebraic variety. Send
y;—>y;. One can show that the map

Jacobian = {A in the two quadrics} - V- (image of enveloped variety under y;—>y3)

is precisely 2-to-1; its image is the Kummer variety (the image of Jac(C) under the quadratic
6-map) realized as a hypersurface in P9*1. We still must find a way to generate the polynomial
defining it; soliton theory provides many identities, which, we hope, will be of use.

11. CONCLUSION

We have tried to show that Baker functions and transferences are marvellously suited for
explicit geometric constructions. They map P? to rational normal scrolls just as the textbooks
prescribe. They provide flags that generate natural cell decompositions of projectivized linear
systems. They define ellipsoidal coordinates for sets of effective divisors.
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422 N.M. ERCOLANI AND H. FLASCHKA

Obviously, the ideas in the last two or three sections need to be polished. After that is done,
we plan to turn to non-hyperelliptic situations. The Burchnall-Chaundy theory is quite general,
and the Neumann system constructions of §§6, 7 have been adapted to the so-called n-gonal
curves by Schilling (1982, 1984). It is not unreasonable to hope for a geometric realization
of the Jacobian of a trigonal curve in the manner of Reid. Meanwhile, the geometry of
hyperelliptic soliton theory presents many attractive problems.

N.M.E.isaN.S.F. Postdoctoral Fellow supported in part by N.S.F. grant no. DMS 84-14092.
H.F. is supported by grants from N.S.F., D.O.A. and A.F.O.S.R.
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